The Effects of CeO2 Nanorods and CeO2 Nanoflakes on Ni–S Alloys in Hydrogen Evolution Reactions in Alkaline Solutions

نویسندگان

  • Meiqin Zhao
  • Yao Li
  • Haifeng Dong
  • Lixin Wang
  • Zhouhao Chen
  • Yazhou Wang
  • Zhiping Li
  • Meirong Xia
  • Guangjie Shao
  • Luísa Margarida Martins
چکیده

Composite coatings synthesized by different morphologies of CeO2 in supergravity devices are highly active in hydrogen evolution reactions (HERs). By adding CeO2 nanoflakes (CeO2 Nf) or CeO2 nanorods (CeO2 Nr), the change in the microstructures of composites becomes quite distinct. Moreover, most Ni–S alloys are attached on the surface of CeO2 and roughen it compare with pure CeO2. In order to make the expression more concise, this paper uses M instead of Ni–S. At a current density of 10 mA/cm2, overpotentials of Ni–S/CeO2 Nr (M–CeO2 Nr) and Ni–S/CeO2 Nf (M–CeO2 Nf) are 200 mV and 180 mV respectively, which is lower than that of Ni–S (M-0) coating (240 mV). The exchange current density (j0) values of M–CeO2 Nf and M–CeO2 Nr are 7.48 mA/cm2 and 7.40 mA/cm2, respectively, which are higher than that of M-0 (6.39 mA/cm2). Meanwhile, double-layer capacitances (Cdl) values of M–CeO2 Nf (6.4 mF/cm2) and M–CeO2 Nr (6 mF/cm2) are 21.3 times and 20 times of M-0 (0.3 mF/cm2), respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Ni-P-CeO2 electrode and study on electrocatalytic properties for hydrogen evolution reaction

In this study ternary Ni-P-CeO2 catalysts were first synthesized by the Co-electrodeposition method on a copper substrate and then characterized by means of microstructural and electrochemical techniques toward a hydrogen evolution reaction (HER). Also, for comparison other catalysts such as Ni-CeO2, Ni-P, and Ni were prepared and characterized by the same methods. The microstructure of the inv...

متن کامل

NieCeO2 composite cathode material for hydrogen evolution reaction in alkaline electrolyte

In this work, nickel-based electrodes were prepared using composite electrodeposition technique in a nickel sulphamate bath containing suspended microor nano-sized CeO2 particles. The prepared NieCeO2 composite electrodes exhibit an enhanced high catalytic activity toward hydrogen evolution reaction (HER) in alkaline solutions. X-ray diffraction patterns indicated that the CeO2 particles have b...

متن کامل

Electrochemical synthesis of NieS/CeO2 composite electrodes for hydrogen evolution reaction

NieS/CeO2 electrodes have been prepared by a composite electrodeposition technique using nickel sulfaminate bath containing suspended microor nano-sized CeO2 particles. The composite electrodes exhibit a high activity for the hydrogen evolution reaction (HER) in alkaline solutions, most likely due to the synergistic effects between Ni and CeO2, as well as the increased surface area of the elect...

متن کامل

Catalytic Properties of Pt Cluster-Decorated CeO2 Nanostructures

Uniform clusters of Pt have been deposited on the surface of capping-agent-free CeO2 nanooctahedra and nanorods using electron beam (e-beam) evaporation. The coverage of the Pt nanocluster layer can be controlled by adjusting the e-beam evaporation time. The resulting e-beam evaporated Pt nanocluster layers on the CeO2 surfaces have a clean surface and clean interface between Pt and CeO2. Diffe...

متن کامل

Microstructure and corrosion resistance of Ni-based alloy laser coatings with nanosize CeO2 addition.

Micron-size Ni-base alloy (NBA) powders were mixed with both 1.5 wt.% (hereinafter %) micron-size CeO2 (m-CeO2) and also 1.5% and 3.0% nano-size CeO2 (n- CeO2) powders. These mixtures were coated on low-carbon steel (Q235) by 2.0 kW CO2 laser cladding. The effects on the microstructures, phases and electrochemical corrosion of the coatings upon the addition of m- and n- CeO2 powders to NBA (m- ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017